



# **FMD** vaccines

Donald King donald.king@pirbright.ac.uk

UK National Reference Laboratory for Vesicular Diseases FAO World Reference Laboratory for FMD (WRLFMD) WOAH Reference Laboratories for FMD and SVD











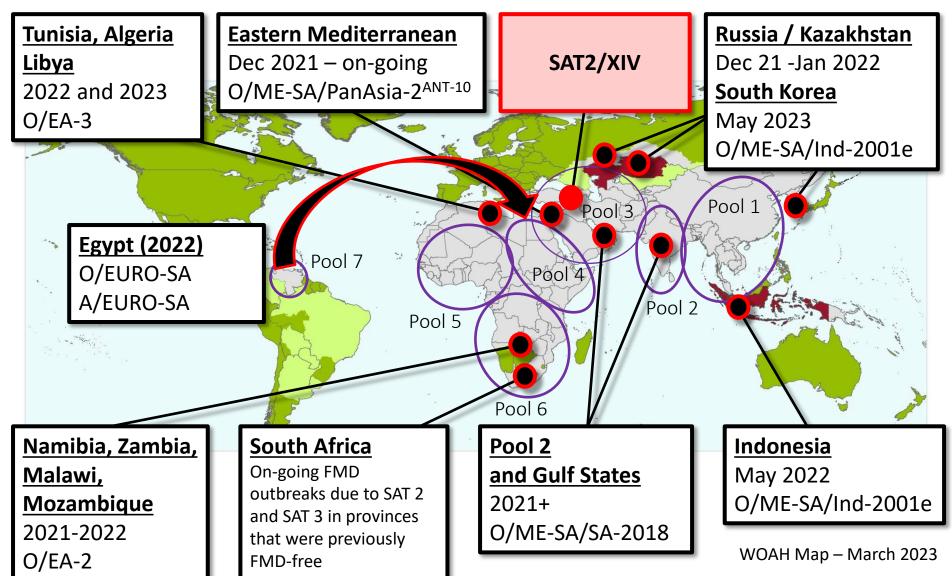


## Foot-and-Mouth Disease

- Affects cloven-hoofed livestock and related wildlife species
- FMD is difficult to control
  - Short incubation period
  - Rapid replication
  - High susceptibility of hosts
  - Direct and fomite transmission routes
- Seven serotypes (O, A, Asia 1, SAT1, SAT2, SAT3 and C)
- Annual Impact\* of FMD
  - Production losses and vaccination:
     (\$ 6.5-21 billion)
  - Incursions into FMD-free countries (>\$1.5 billion)






tongue lesion



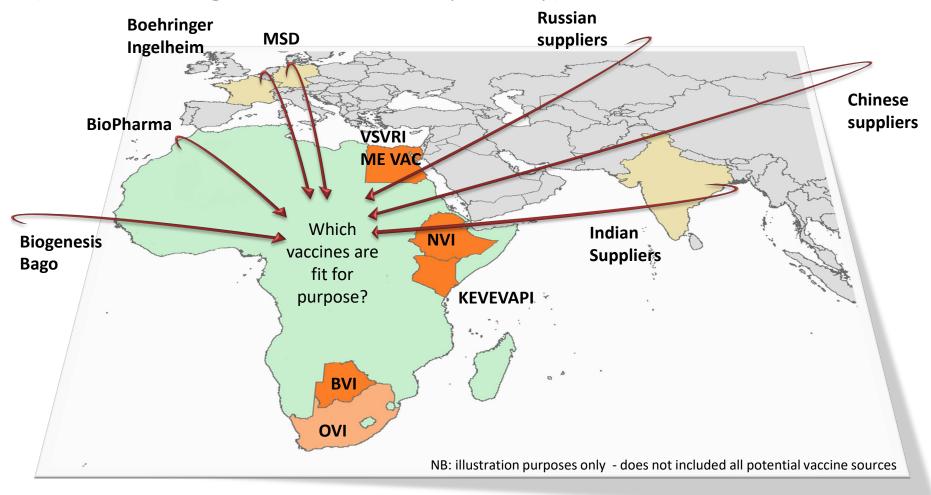
interdigital foot lesion

## Headline global events (2021/23)

https://www.wrlfmd.org/ref-lab-reports



www.pirbright.ac.uk


### FMD vaccines

- Vaccines produced by inactivation of FMDV isolates grown in cell culture
- > 2 billion doses administered annually
- Success in Europe and South
   America show that vaccination is
   an important tool to control and eradicate FMD
- Need to cover multiple serotypes and antigenic variants
- Protective 146S antigen (intact FMDV capsid) is unstable

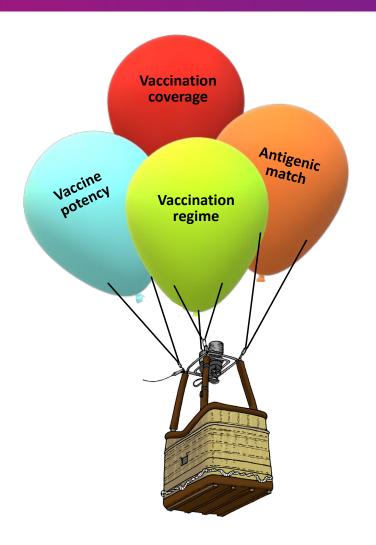


# Selection of FMD vaccines is complex

(different antigens, formulation, potency)



Inherent genetic (and antigenic) diversity in field viruses from different FMD serotypes (O, A, SAT 1, SAT 2 [SAT 3])


### FMDV vaccine selection

#### Approaches

- In-vitro vaccine matching (<u>www.wrlfmd.org</u>)
  - Vaccine matching is performed by measuring whether antibodies generated by the vaccine will react to the field virus
  - Compares the ability of bovine vaccinal sera to neutralise field strains vs a single vaccine strain
  - r₁-value ≥ 0.3 indicates that there is a close relationship between the field isolate and vaccine strain – A potent vaccine containing this vaccine strain is likely to confer protection
  - Not a quantitative test
- In-vivo vaccine cross-protection studies (heterologous)
- Small-scale immunogenicity studies
- Field evaluation

# Use of vaccine matching data

- Antigenic-match (vaccinematching) is not the sole determinant of whether a vaccine will work!
  - Vaccine potency
  - Vaccination regime (one dose/two dose)
  - Vaccine coverage in the target population
- Post vaccination monitoring is important!







# Vaccine selection: challenges



#### Obvious gaps:

- The quality and performance of FMDV vaccines cannot be easily assessed through direct testing – immunisation of animals usually needed
  - New tools are being developed to directly assess 146S content of vaccines (nanobodies and Mab-based tests)
- 2. Vaccine matching is only performed on a limited number of vaccines
- Homologous/monovalent QA/QC (WOAH Manual) vs heterologous vaccine performance in the field with multivalent products
  - Adoption of regional reference antigens (e.g. see: <a href="https://www.wrlfmd.org/node/2096/">https://www.wrlfmd.org/node/2096/</a>) can be used to assess/compare antibody responses for formulated FMD vaccines

### **New FMD vaccines**

### Gaps addressed by current nearmarket technologies:

- Increased biosafety (not derived from infectious FMDV)
- FMDV capsids with improved stability
- Improved DIVA capability
- High-quality vaccines at a lower price

#### Platform technologies:

- Stabilised empty VLPs
- L-deletion vaccine strains
- RNA vaccines
- Adenovirus vectored vaccines

#### Continued challenges:

- Longer duration of immunity
- Wider strain specificity

